

What is Quality Control?
A process that verifies the quality, accuracy and consistency of digital files or data

Suggested Steps in Quality Control Workflow
● Regularly test, use and upgrade equipment and software for QC
● Design your workflow around 2 step-process

○ creation
○ verification

● Comparison to source material
● Fixity check
● Metadata; check that it exists and is stored in the correct format and location, that

metadata is accurate, complete and valid
● Verify that technical information matches standards for the project (file format, file

naming, sidecar files, etc)

An important part of any workflow is to build QC into a system

Equipment/System evaluations
-scheduled service and calibrating protocols according to manufacturer
recommendations, swapping out gear

Metadata
-embedded metadata guidelines

Quality Control of Disk Images

1. Checking for bad sectors

2. “Verifying” the image against source media

3. Mounting the image, checking partitions, exporting files

4. Metadata extraction

When thinking about a Quality Control workflow for disk images, here some points we
thought were important to consider:

1. Bad sectors (image on top right) - a bad sector is a sector that can’t be read
due to physical causes like deterioration of the drive or a malfunction/failing
hard drive. -if you get bad sectors try with a different drive, if you get the same
bad sectors with different drives it’s probably your media - isolate your
variables, a la scientific method.

2. Verifying the image. If the image is supposed to be a bit-for-bit copy we have
to have some way of making sure that it actually is. More on that in a second

3. Have to make sure the file is usable. Mounting the image means opening it up
on another computer and taking a look at what’s inside, just like when you
connect an external hard drive to your computer and can browse the files and
folders. We’ll discuss in depth

4. Extract metadata to corroborate a successful imaging process and that it
matches your source file

Initial Steps– verify source media

 $ md5 /dev/disk1

when we talk about verification, we mean that the image matches the source volume.
This can be done by re-hashing the source volume and comparing it to the image’s
hash. I would recommend doing this process - comparing the checksum of the image
to the checksum of the original volume - manually if the application you are using
doesn’t automate this process.

The Tableau Imager software and FTK Imager do not automate this process. Keep in
mind that a checksum mismatch is not a very granular measurement of difference. A
difference of one or two bytes in a 500 GB disk image is in most cases negligible, but
that’s enough to change the checksum.

Just as you can create a checksum of a file, you can create a checksum of a mounted
volume. When a drive is mounted to your OS, it is assigned an identifier, so in this
example “disk1.” You can create a checksum of the entire volume, just as you would
with a file, from the command line. OR you can automate it. The only application that
I’m aware of that automatically verifies the source volume and the disk image are
identical is guymager.

This is a little in the weeds, but FTK imager has a verification option in its GUI, which
simply verifies the contents of the disk image. It creates a checksum during the
process of disk imaging, and then verifies that the resulting disk image is the same as
the data read during acquisition. This protects against an error in writing the disk
image. BUT if the data was misread, then FTK’s verification process doesn’t help you.
Guymager re-reads the source and compares that with the disk image to assure that

there wasn’t an error in the reading OR writing process.

Initial Steps– verifying source and disk image

● Create a duplicate copy of the disk image for the purpose of testing in a
staging area

● Verify that the duplicate copy is exactly the same as the source image by
using the diff command
○ $ diff Source1 Source2

● If the image was not created in Guymager (which automatically runs this
process), you can also run the following commands to verify the integrity
of the image against the original source media:
○ $ md5sum mydiskimage.E01
○ $ md5sum [device ID of original media such as /dev/sr0]

You may also use the diff (stands for difference) command by creating a duplicate
copy of the disk image for the purpose of testing and locate it on a staging area

Type: diff source 1 source 2 on terminal to compare both images, This command is
used to display the differences in the files by comparing the files line by line.

You can also run a md5 checksum on the newly created disk image and compare that
with the source md5 checksum

Mounting Disk Images– libewf on macOS

Another way to verify a newly created disk image is to mount it and peruse through
the contents of the image and independently examine any artwork related files to
make sure that the disk image file you created is usable.

Even though a disk image is not a physical disk, it can be mounted in the same way.
“mounting” here refers to allowing an image to be accessible for reading and writing
on a computer.

Sometimes you’ll run into issues like the one on this screen, which can be solved with
the assistance of open-source tool devs and colleagues.

BitCurator Environment

Directories:

Forensics and reporting contains launchers for forensics tools, disk and file system
analysis tools, and report generation utilities

Imaging and recovery folder contains tools to create raw and forensically packaged
disk images from physical media

Packaging and transfer folder points to transfer and accession tools including bagger,
python- bagit, grsync (gui rsync)

Additional tools- includes other useful software tools that may be used to inspect and
process disk images and files

You can create a folder on the desktop as your destination folder for disk images,

Read-only mode- mounting files in read only mode via a loop device, a pseudo device
used to enforce the read-only mount, because of this loop device the contents of the
mount will not appear on the files window itself. You must double click the disk icon
that appears on the desktop to browse any available file system. no eject button is
present for this type of mount, right-click on the disk and select ‘unmount to unmount;

libewf on BitCurator

The libewf package contains the following tools:
* ewfacquire; which writes storage media data from
devices and files to EWF files.
* ewfexport; which exports storage media data in EWF
files to (split) RAW format or a specific version of EWF
files.
* ewfinfo; which shows the metadata in EWF files.
* ewfmount; which FUSE mounts EWF files.
* ewfrecover; special variant of ewfexport to create a
new set of EWF files from a corrupt set.
* ewfverify; which verifies the storage media data in
EWF files.

EWF disk images can’t be mounted directly on most OSs. They need special tools.
You can either extract a raw disk image from the EWF or mount it directly using an
libewf.

Obviously, needing a special tool to mount EWF disk images is a disadvantage, but
since this tool is open source and fairly widely adopted, I think it is kind of a low risk.
You could equate it to the risks inherent to ffv1 mkv video files. There aren’t too many
players or editing software that can interact with the file type, but given the
compression and built in fixity checks it contains, I’m willing to accept that trade off.

Once libewf is installed it’s fairly straightforward to use.

Mounting Disk Images

● Mount as “read only” in BitCurator

● Mount with the command
 “mount -o loop,ro /path/to/disk.img /mountpoint/”

● Create a “Work Copy” and mount that one instead.
○ Need change the file extension of the disk image to

something the OS will recognize, like “.iso”

A more straightforward way...

Safety first! Mounting a disk image can expose it to risk if the mounted volume is not
write protected. BitCurator allows you to mount a disk image as read only by simply
right clicking on the disk image and selecting that option. here’s also a Linux
command line tool that allows for read only mounting. I feel it would be remiss to not
mention it, but it’s a really pain in the ass.

For raw disk images, I’ve been doing the last option. I’ve created a copy of the original
disk image, in order to ensure that I don’t alter that copy, and then I make a “work
copy” and I mount that one in the macOS. The macOS won’t see a disk image with a
.dd or .raw file extension as a disk image, so you just change the extension, and it will
mount.

Disk Image Access in BitCurator

BitCurator Disk Image Access: A GUI interface to browse raw and forensically-packaged
disk images, export files and deleted items, and view disk image metadata.

Located in the forensics and reporting directory

Disk Image Access is a tool that is specific to BitCurator. It’s a GUI interface to browse
raw and forensically-packaged disk images, export files and deleted items, and view
disk image metadata.

It’s essentially a way of exploring the file system of a disk image without having to
mount it. So it’s a lower risk way of looking at the contents of a disk image. I’ll admit
that I’ve had mixed results with this tool, it will fail on me sometimes when some of the
other methods I have described here work fine, BUT, when it does work, it will show
you all of the file systems and partitions inside of a disk image, all of the directories,
and all of the files inside of those directories are, and lets you select specific files or
directories to export from the disk image into a new directory.

BitCurator Reporting Tools

● features (directory): The annotated features
generated by bulk extractor;

● bc_format_bargraph.pdf (file): Histogram showing
file formats;

● bulk_extractor_report.pdf (file): High-level overview
of bulk extractor feature locations on disk;

● fiwalk_deleted_files.pdf (file): File documenting
paths to any deleted materials found in a given
partition;

● fiwalk-output.xml.xlsx (file): DFXML output (file
system metadata) converted to an Excel spreadsheet;

● fiwalk_report.pdf (file): High-level overview of file
system characteristics;

● format_table.pdf (file): Long-form file format names
for formats shown in bc_format_bargraph.pdf;

● premis.xml (file): PREMIS preservation metadata.

BitCurator gives you the option to run a number of different reporting tools against
their disk images. Although each of these tools can be run individually, users may
alternatively use the "Run All" tab of the BitCurator Reporting Tool in order to
simultaneously execute fiwalk, the annotated features report, and the BitCurator
forensic reports.

● features (directory): The annotated features generated by bulk extractor;
● bc_format_bargraph.pdf (file): Histogram showing file formats;
● bulk_extractor_report.pdf (file): High-level overview of bulk extractor feature

locations on disk;
● fiwalk_deleted_files.pdf (file): File documenting paths to any deleted

materials found in a given partition;
● fiwalk-output.xml.xlsx (file): DFXML output (file system metadata) converted

to an Excel spreadsheet;
● fiwalk_report.pdf (file): High-level overview of file system characteristics;
● format_table.pdf (file): Long-form file format names for formats shown in

bc_format_bargraph.pdf;
● premis.xml (file): PREMIS preservation metadata.

BC Rreporting tool in the forensics and reporting directory

The run all tab will allow to carve the raw disk contents for features of interest,
generate a dfxml listing of the file system hierarchy, match features to files within the
file system and generate high-level reports. Click on Launch BEViewer to run

https://confluence.educopia.org/display/BC/Fiwalk
https://confluence.educopia.org/display/BC/Annotated+Features+Report
https://confluence.educopia.org/display/BC/Forensic+Reports
https://confluence.educopia.org/display/BC/Forensic+Reports

bulk_extractor before proceeding

beviewer is the graphical front end to bulk-extractor. together these tools allow you to
indentify various features of interest contained within the bitstream extracted from
source media such as ssn, email addresses, exif metadata, and others

You may run that first and then the ‘run all’ selection on bc reports or choose to run
different reports individually on their respective tab

Bulk_extractor
bulk_extractor is a program that extracts features such as email
addresses, credit card numbers, URLs, and other types of information
from disk image files. file directories or files.

● It finds email addresses, URLs and credit card numbers that
other tools miss because it can process compressed data (like
ZIP, PDF and GZIP files) and incomplete or partially corrupted
data. It can carve JPEGs, office documents and other kinds of
files out of fragments of compressed data. It will detect and
carve encrypted RAR files.

● It builds word lists based on all of the words found within the
data, even those in compressed files that are in unallocated
space. Those word lists can be useful for password cracking.

● It is multi-threaded; running bulk_extractor on a computer with
twice the number of cores typically makes it complete a run in
half the time.

● It creates histograms showing the most common email
addresses, URLs, domains, search terms and other kinds of
information on the drive.

Bulk_extractor, developed by Simson Garfinkel,41 is a forensics tool that can scan a disk image
and look for particular types of content: strings that match a certain format or type, and
metadata associated with certain image files and compressed files. It is very effective at
identifying, for example, an email address, URL, or any specified string. It is not, however, as
effective at helping an archivist evaluate a video or image, nor is it meant to act as a
substitute for thoughtful and considerate evaluation of content. For example, according to
bulk_extractor, the contents of a file might be benign due to absence of credit card numbers
and Social Security Numbers (SSNs), but that doesn’t mean those contents would not be
harmful to its creator or others if kept. Bulk_extractor is designed to be an identification tool,
not a redaction or deletion tool. Its purpose is to help find information, not remove it.

Image source: 11 Points to Consider When Virtualizing Security
from resources.infosecinstitute.com

Virtualization & Emulation

Virtualization and emulation, the process of running an operating system or other
software within an isolated virtual environment, is one strategy for providing access to
software based artworks, particularly those that are facing obsolescence. I imagine all
of you are familiar with virtual machines, as BitCurator is distributed as is a virtual
machine.

Practices for exhibiting a software-based artwork using a disk image
are still in development. However, the exhibition of a work represents
a key opportunity for research, developing more robust
documentation and creating a deeper understanding of the work’s
needs. Disk imaging can be a powerful tool when conducting such
research.

Disk images can also be used to create a new exhibition copy of the
original device on a new machine. This process, referred to as creating
a replica computer, was adopted by MoMA while exhibiting the Long
March: Restart (2008), by Feng Mengbo (b. 1966) (Lewis and
Fino-Radin 2015). Creating a replica computer can be an effective
strategy for mitigating the risk of hardware failure, but it also allows
an opportunity to evaluate the significance of certain properties of the
original machine. If the replica does not contain the exact same

components or the exact same data as the original computer but still
faithfully reproduces the work, it is still an effective replica. An
ineffective replica—one that lacks certain data or components and
does not faithfully reproduce the work—may still be instructive,
helping conservators to understand what components are essential to
the work.

A note about QEMU

A bit out of scope for this workshop… but wanted to briefly talk about qemu, why
would you consider it, and point you to an excellent resource qemu-qed (a work in
progress)...

QEMU QED began as a project during the iPRES 2019 conference, as part of the
“Reading the Matrix: A Hackathon Linking Digital Forensics to User Access”,
sponsored by the teams behind EaaSI and BitCurator. it is based on on ffmprovisr
with code and content contributions from Ashley Blewer and Nick Krabbenhoeft.

QEMU is a command line application that is primarily used by developers and IT
professionals for testing software in different environments, creating virtual
environments on servers, and more.

There are many reasons why you would consider incorporating emulation, the chief
reason among them is to apply emulation techniques as a preservation strategy.
Emulation can remove an software based artwork’s dependency on ephemeral
physical computer hardware, which we know is prone to obsolesce quickly. We can
also use emulation as a preventive conservation strategy, when we create a backup
of an artwork’s computer we can generate a safe copy from which to work from.
Through actions like these, you can minimize the depreciation of equipment during an
extensive exhibition schedule/.

Through emulation you may also replace technical components that are at risk of
failure or that cannot be easily reinstated. Finally, you may use emulation as part of a
workflow for disk imaging quality assurance. By running an application in a virtual

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure
https://bitcuratorconsortium.org/
https://amiaopensource.github.io/ffmprovisr

environment side by side with the non-emulated version of the work, you can certify
that a disk image that you took on a computer (for example) is usable in the future.

