
Image source:
https://www.redbubble.com/people/
zombieoummy/

In this section we’re going to discuss the different information and reports one can
collect while creating disk images, and the tools for creating and interacting with that
information

sidecars

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Some of the most valuable metadata about a disk image is thankfully automatically
captured by disk imaging software. All of the disk imaging software we discussed
create a “sidecar file” (hence this slide with a picture of a dog in a motorcycle sidecar).
Different applications contain different information, but almost all of them contain
some key items, such as when and how the disk image was created.

ddrescue sidecar

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Ddrescue sadly does not include the md5 checksum of the disk image in the sidecar
file. The software does however provide certain helpful technical metadata like the
block size of the file system, or specific errors encountered.

ewfacquire sidecar

● Not automatically generated!
○ The user must specify the log output path

● Just the md5 hash of the checksum
● Also lists errors if they are encountered

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,
2021

Ewfacquire is the disk imaging command built into libewf. The log file created by
ewfacquire is very bare bones, the least detailed of any disk imaging tool I’ve seen.
It’s not even automatically created, and even then, it just includes the md5 hash of the
disk image, and nothing else.

Guymager Sidecar

The Guymager output on the other hand is incredibly thorough, including a very
specific description of both the “host” machine and the “target” device, and listing in
the info file the commands that were run to collect this information.

Perhaps most significantly, the Guymager application includes the option to automate
source verification by re-hashing the source volume after imaging, and include both
the checksum of the volume and the image in the output.

Metadata Tools

● Disktype (pre-installed on BitCurator)
○ Sample input:

disktype ~/path/to/disk.img

○ Sample output:

--- /Volumes/TBMA Drobo/Time Based Media Artwork/2018-027_Giorno/2018-027-b-1_FTK.001
Regular file, size 3.637 GiB (3904897024 bytes)
No type and creator code
DOS/MBR partition map
Partition 1: 3.633 GiB (3900702720 bytes, 7618560 sectors from 8192)

 Type 0x0B (Win95 FAT32)
 FAT32 file system (hints score 4 of 5)

Volume size 3.629 GiB (3896508416 bytes, 118912 clusters of 32 KiB)

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

I’m now going to run through a big list of tools that I think are helpful when collecting
metadata on disk images.

Disktype detects and outputs the file systems ad partition tables of a volume

You can run disktype on disk images or on a disk itself, but you cannot run disktype
on a mounted disk. So, in the event you want to run disktype on a mounted disk, you
need to unmount from the command line, either using the diskutil command in macos
or the umount command in linux

Metadata Tools

● mmls (part of SleuthKit, pre-installed on BitCurator)
○ Sample output:

DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
001: ------- 0000000000 0000008191 0000008192 Unallocated
002: 000:000 0000008192 0007626751 0007618560 Win95 FAT32 (0x0b)

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

mmls is similar to disktype, in that it also displays the contents of a file system. In
general, this is used to list the partition table contents so that you can determine
where each partition starts. These are the “offsets” we talked about on Day 1. The
output identifies the type of partition and its length, which makes it possible to use
tools to extract the partitions.

Metadata Tools

● SleuthKit
○ Open source digital forensics software
○ Library of command line tools (pre-installed on BitCurator)

● Autopsy
○ GUI that bundles these tools, runs on Windows

● Command line tools include
○ Mmls
○ Tsk_recover
○ A bunch I don’t use

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

SleuthKit is an open source suite of tools for processing disk images. I've
predominantly interacted with sleuthkit as a library of command line tools pre-installed
in BitCurator, but I have also used the Windows dependent GUI Autopsy, which
bundles the tools in sleuth kit. I only tested Autopsy a bit before the pandemic, but at
the time I was struggling with exporting reports from the software. It presented
information nicely and visually, but from what I could tell, wouldn’t be ideal for creating
metadata reports for future reference.

 We’ve already talked about mmls. The other commonly used sleuth kit tool in cultural
heritage is tsk_recover. “Tsk” stands for “The Sleuth Kit.” Tsk_recover is used to
carve files from a file system.

File carving is a process used in computer forensics to extract data from a disk drive
or other storage device without the assistance of the file system that originality
created the file. Essentially looking at the byte offset of a file based on it’s metadata,
and copying the raw bits to a new location, and rewrapping those bits with the original
file name.

For our purposes, this isn’t terribly different from mounting a disk image and copying
the files out of it, it just skips a step. With damaged file systems, or data that is
obfuscated from the file system, carving can allow you to extract files you otherwise
couldn’t.

Metadata Tools

● siegfried (pre-installed on BitCurator)
○ Sample output

siegfried : 1.9.1
scandate : 2021-07-01T14:45:31-06:00
signature : default.sig
created : 2020-10-06T19:13:40+02:00
identifiers :
 - name : 'pronom'
 details : 'DROID_SignatureFile_V97.xml;
container-signature-20201001.xml'

filename :
'/Users/eddy/Downloads/SantaClausConquersTheMartians.iso'
filesize : 2206984192
modified : 2021-06-13T20:38:26-06:00
errors :
matches :

- ns : 'pronom'
id : 'fmt/468'
format : 'ISO Disk Image File'
version :
mime :
basis : 'extension match iso; byte

match at [[32769 5] [34816 6]]'
warning :

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Siegfried is a file format identification tool which examines a file and attempts to
match it to the PRONOM registry. Siegfried is not a disk image specific tool, it’s just a
metadata tool I really like.
The PRONOM id is listed in the id field, in this example it is fmt/468.

Metadata Tools

● tree (pre-installed on BitCurator)
○ Sample output:

/Volumes/Santa\ Claus\ Conquers\ The\ Martians
├── AUDIO_TS
└── VIDEO_TS
 ├── VIDEO_TS.BUP
 ├── VIDEO_TS.IFO
 ├── VTS_01_0.BUP
 ├── VTS_01_0.IFO
 ├── VTS_01_0.VOB
 ├── VTS_01_1.VOB
 ├── VTS_01_2.VOB
 └── VTS_01_3.VOB

2 directories, 8 files

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Tree is also not a disk imaging specific tool, but again can be helpful when looking to
automate description of disk images. Tree is a command line tool for creating a text
output of the directory structure of a volume or directory

fiwalk -X ~/path/to/fiwalk_output.xml
'/path/to/disk_image.e01'

Metadata Tools

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

A fiwalk report can be really helpful in developing a more thorough understanding of
every byte in a disk image. Fiwalk, short for “file and inode walk,” is a open source
command line tool. The tool creates detailed technical information about a disk image,
including a checksum for each file in the file system.

As the name suggests, fiwalk "walks" the file tree and collects information (metadata)
about each of the files along the way, including the date the file was last accessed,
the date it was last modified, the file type, the user who created the file, and more.

DFXML

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,
2021

Fiwalk exports this information in a standardized and interoperable format, Digital
forensics XML. You can see in the slide it includes the md5 and sha1 checksums of
each file, along with the files sector offset.

Bulk_extractor Scanners

BEviewer

● Helps protect the materials' donor by
discovering potentially sensitive
information before making a disk
public (e.g. social security numbers),
and

● explore materials by finding specific
types of information (e.g. search for
email addresses in order to locate
correspondence between an author
and her editors)

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,
2021

Another tool we want to introduce is Bulk Extractor, which I have honestly only
interacted with using the GUI version, which is called The Bulk Extractor Viewer
(BEviewer). Bulk extractor scans a disk image, or a directory of files and looking for
personally identifiable information (PII) that a donor may want redacted before their
materials are made publicly available. The output of the tool is a series of text files.
The text file named “emails.txt” for instance, will have any emails encountered during
Bulk_extractor’s scans. Another text file might be named url.txt and contain and urls
discovered, another telephone.txt, etc. etc.

Brunnhilde

● Open source tool by Tessa Walsh
■ Pre-installed in BitCurator
■ Also available on GitHub

● Python tool, easy to download with “pip” outside of BitCurator
■ But with many dependencies, especially for working with disk images

● Automatically runs tsk_recover, fiwalk, siegfried, bulk extractor, and tree
■ “Carves” files from disk image
■ Compiles metadata in CSV format, and creates

html reports you can read in your browser

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Brunnhilde is a tool that is used for processing digital collections, not just disk images.
But it can be a great tool for automating disk imaging workflows. Brunnhilde combines
many of the tools we’ve talked about already, including: Siegfried, tree, bulk_extractor,
tsk_recover and fiwalk.

 It also includes ClamAV (a virus scanning software).
 (read bullet points)

The most cumbersome Brunnhilde dependency is libewf, which we’ll walk through
how to download

Brunnhilde

● Usage:

brunnhilde.py -d disk_image.E?? /output/directory/to/create [basename]

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

This is the command for running brunnhilde from the command line. There is a new
GUI for brunnhilde but I’ve never used it. You need to use the “d” flag when running
brunnhilde on disk images. If you’re just pointing brunnhilde to a directory or a
mounted volume, omit the -d flag. As you can see from the example onscreen, the
tool works with both raw images and ewf disk images. The [basename] bit there is just
“some number.” I think it was intended for acquisition or accession numbers. The
basename requirement is deprecated, and only necessary with older versions of
brunnhilde (less than 1.9), but the most recent version of BitCurator is still running
v1.8

Brunnhilde

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Brunnhilde outputs its reports to a directory, which looks like this. The “carved files”
directory contains the identified files from the file system. The other files and
directories contain reports. The CSV files are used to populate the very helpful html
report.

Brunnhilde

The Brunnhilde html reports are very human friendly, and contain the information
collected by the different tools incorporated into Brunnhilde

Brunnhilde

Here you can see (maybe) brunnhilde listing out the checksums of individual files
from within the disk image, along with other technical metadata like their file size and
data modified.

Disk Image Differencing

● Download python scripts from the dfxml github
● Run them on DFXML data using python

bcadmin@ubuntu:~$ python3.6 /dfxml-master/python/idifference2.py
fiwalk_output1.xml fiwalk_output2.xml > differences.txt

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Lastly I want to point out a python script that you can download from the DFXML
github page (located on the resources document at the bottom of the agenda). The
script is called “idfference.” When this python script is run against 2 Fiwalk reports it
creates a document that points out the specific difference between 2 disk images.

Disk Image Differencing

NMAAHC Workshop,
Caroline Gil and Eddy Colloton,

2021

Here’s an example output of a idifference report run on two identical disk images, so
you can see how the report is organized.

